Tutorial for Response Spectrum Analysis using CAEPIPE

The following are the Steps for performing the Response Spectrum Analysis using CAEPIPE.

General

• The <u>Response Spectrum</u> is a plot of the maximum response (maximum displacement, velocity, acceleration or any other quantity of interest) to a specified dynamic loading applied on all possible single degree-of-freedom systems. The abscissa of the spectrum is the natural frequency (or period) of the system, and the ordinate is the maximum response.

In general, response spectra for a seismic event are prepared by calculating the maximum response to a specified ground motion excitation of single degree-of-freedom systems with various amounts of damping. Numerical integration with short time steps is used to calculate the response of each single degree-of-freedom system. The step-by-step process is continued until the total earthquake record is completed, the results of which becomes the response of that system to that excitation. Change the parameters of the system to change its natural frequency, repeat the process for the same excitation and record the new maximum response. This process is repeated until all frequencies of interest have been covered and the results plotted. Typically the El Centro, California earthquake of 1940 is used for this purpose. Attached ("ElCentro.txt") is an ASCII file that contains spectrum from El Centro, California earthquake of 1940. [*First line in this file is the name of the spectrum. Second line defines the "Units" for Abscissa (X-axis) and Ordinate (Y-axis) axes, separated by a space. Starting from the 3rd line, the first column is Abscissa and the second column is Ordinate. For further details on this ASCII file, refer to the "Spectrums" subsection under "Misc." section of Menus in the CAEPIPE User's Manual.]*

- Response Spectrum thus prepared as explained above is then input/imported into CAEPIPE Stress model for analysis through CAEPIPE Layout window > Misc > Spectrums.
- Once the inputting of different spectrums are done, input the Spectrum load applicable for the current analysis through Layout window > Spectrum.
- Save the model and perform analysis using CAEPIPE.
- Spectrum load specified will be applied simultaneously at all supports during the "uniform response spectrum" analysis, following which CAEPIPE will compute the modal and directional responses (to this uniform excitation), which are further combined as per the combination method selected.
- Since the response spectra give only maximum response, only the maximum values for each mode are calculated and then superimposed (modal combination) to give total response. A conservative upper bound for the total response may be obtained by adding the absolute values of the maximum modal components (absolute sum). However this is excessively conservative and a more probable value of the maximum response is the square root of the sum of squares (SRSS) of the modal maxima.
- Ensure the CAEPIPE results meet project specific analysis requirements. If not, make changes to piping layout and/or changes to support types and their locations and then reanalyze the model until the analysis requirements are met.

Tutorial

Step 1:

Attached is a sample CAEPIPE model with Response Spectrum. The piping layout shown below (extracted from the attached model) is for a water supply line that has the following layout and properties. The Analysis Code is specified as B31.9 for this sample model.

-0-	*** Caepipe : Materials (2) - [08_ResponseSpectrum.mod (C:\Tutorial — 🛛 🗙													
File	e Edit	View Options	Mi	sc Wir	ndow	Help								
#	Name	Description	Ty pe	Density (Ib/in3)	Nu	Joint factor	#	Temp (F)	E (psi)	Alpha (in/in/F)	Allowable (psi)	^		
1	A53	A53 Grade B	CS	0.283	0.3	1.00	1	-325	31.4E+6	5.00E-6	20000			
2	API	API 5L Grade B	CS	0.283	0.3	1.00	2	-200	30.8E+6	5.35E-6	20000			
3							3	-100	30.2E+6	5.65E-6	20000			
							4	70	29.5E+6	6.07E-6	20000			
							5	200	28.8E+6	6.38E-6	20000			
							6	300	28.3E+6	6.60E-6	20000			
							7	400	27.7E+6	6.82E-6	19900			
							0	500	27.20.0	7 075 6	10000	1		

140-	*** Caepipe : Pipe Sections (4) - [08_ResponseSpectrum.mod (C:\Tut 🛛 🗙													
File	File Edit View Options Misc Window Help													
#	Name	Nom Dia	Sch	OD (inch)	Thk (inch)	Cor.Al (inch)	M.Tol (%)	Ins.Dens (Ib/ft3)	Ins.Thk (inch)	Lin.Dens (Ib/ft3)	Lin.Thk (inch)	Soil		
1	361	36"	STD	36	0.375	0.075		13	2					
2	360	36''	STD	36	0.375	0.075		13	2.5					
3	540	Non Std		54	0.375	0.075		13	2.5					
4	541	Non Std		54	0.375	0.075		13	2					
5														

-0-	Caepi	pe : l	.oads	(32) -	[08_Resp	onseSpe	ctrum.res ((C:\Tuto	ri			×		
<u>F</u> ile	e <u>E</u> dit	<u>V</u> i	ew	<u>O</u> ptions	<u>M</u> isc	<u>W</u> indow	<u>H</u> elp							
+														
#	Name	T1 (F)	P1 (psi)	Desg.T (F)	Desg.Pr. (psi)	Specific gravity	Add.Wgt. (Ib/ft)	Wind Load 1	Wind Load 2	Wind Load 3	Wind Load 4	^		
1	360	100	125	100	125	1.0	77.2	Y						
2	361	100	125	100	125	1.0								
3	300	100	125	100	125	1.0	65.9	Y						
4	301	100	125	100	125	1.0								
5	240	100	125	100	125	1.0	54.6							
6	241	100	125	100	125	1.0								
7	200	100	125	100	125	1.0	48.9	Y						
0	201	100	105	100	105	10						~		

Step 2:

Input Spectrums into CAEPIPE. This can be done in three ways:

- 1. Input spectrums directly into the model.
- 2. Create a spectrum library and load spectrums from it.
- 3. Input spectrums from a text file.

When the first two methods are used, the units for the X- and the Y-axes as well as the interpolation method are set through the menu Options > Spectrum.

-0-	Caepipe : Spect	rum	s (2) - [08.			×		
File	e Edit View	Opti	ons Misc	Window	Help)		
			Spectrum		4			
-			Font		-	~		
#	Name	#	Period (Sec)	Acceleration (g's)			Spectrum Options	×
1	Malta, NY	1	0	0.0856				\sim
2	Malta, NY_b	2	0.037	0.1284			Abscissa Ordinate	
3		3	0.074	0.1712			C Frequency (Hz) Displacement	⊖ inch
		4	0.11	0.214			Revied (See)	C mm
		5	0.331	0.214				~
		6	0.551	0.214			Acceleration	C in/sec2
		7	1.914	0.061665				C mm/sec2
		8	3.276	0.036023				🛈 oʻs
		9	4.638	0.025443				
		10	6	0.019667			Interpolation 💿 Linear Interpolation	Linear
		11	8	0.011063			O log	C Log
		12	10	0.00708				CLUY
		13	20	0.00177				
		14 30 0.000787	OK Cancel					
		15						

For the sample layout described above, spectrum was input directly into CAEPIPE model manually. In case you wish to read in the supplied "ElCentro.txt" spectrum file into the CAEPIPE model, select "Read Spectrum" from the File menu in the Layout window.

Step 3:

Once the inputting of different spectrums are done, input the Spectrum load itself for analysis through Layout window > Spectrum.

-0-	• Саер	ipe : Layo	out (85) -	[08_R	espo	onseSpe	ectru	ım.n	nod ((:\Tut	orials\Spec	ctru	ımTutorial)]	—	×
File	e Edi	t View	Options	Load	ls	Misc	Wir	ndov	v He	elp					
	۵ ۵	<u> </u>			Lo	ad case	es (6)			A	•				
L					Sta	atic seis	mic.				<u>`</u>				
#	Node	Туре	DX (ft'in'')	~	Wi	ind 1				ad	Data	^			
1	Title =	-			Wi	ind 2									
2	10	From		-	Wind 3						Anchor				
4	30	Denu			Wi	ind 4					Hanger				
5	40	Bend		\checkmark	Sp	ectrum	·				riangor				
6	50				Tir	ne histo	orv				Limit stop				
7	60				На	rmonio				0					
8	65					1	 T		0.0	الم					
9	70					12'0''	/	API	540	540	Limit stop				
10	75					12'0''	- /		540	540					
11	80					12'0"	- (540	540	Limit stop				
<u>, 17</u>	1.0:1	1	1			11211	0		1:1411	1:1411	1	-			
Spe	ectrun	n Load								\times					
						7 -				_					
×	spect	rum <mark> Ma</mark>	lta, NY_b		-	Fa	actor		1.000						
Y	spect	rum Ma	lta, NY_b		-	- Fa	actor		0.043						
z	spect	rum Ma	lta, NY_b		-	- Fa	actor	Ē	1.000						
	Mode	Sum			Dire	ection 9	Sum-			.					
	⊙ si	355			œ	SBSS									
	0.0	nselu sna	aced		Ċ	Ahsoli	ute								
	Ο ΔI	osolute				1 12001									
	O N	RI													

X, Y and Z spectrums

Cancel

Reset

ΟK

Select a spectrum from the drop-down combo box, which should have been input in the spectrum table for each direction.

Factor

The multiplying (scale) factor for the spectrum is input here. The same spectrum may be multiplied by different (Scale) factors to apply spectrum loads for different dynamic events.

Mode Sum

Pick one of three choices, "SRSS" (square root of sum of squares), "Closely spaced" or "Absolute".

Direction Sum

Pick one of two choices, "SRSS" (square root of sum of squares) or "Absolute".

Step 4:

Include "Response spectrum" analysis load case through Layout window > Load cases. Save the model and perform the analysis through Layout window > File > Analyze. CAEPIPE will apply these loads to compute the response of the piping system by performing a Response Spectrum analysis along with other load cases defined in the piping system.

Load cases (6)	×
🔲 Empty Weight (W)	🔲 Design (W+PD+TD)
🔽 Sustained (W+P)	🔽 Wind
💌 Expansion (T1)	🔽 Modal analysis
🔽 Operating (W+P1+T1)	Response spectrum
OK Cancel	All None

Step 5:

Upon successful analysis, CAEPIPE will now show a "Load case" with name "Response spectrum" under "Support Loads", "Displacements", "Element forces" and "Support load summary" results.

Load Cases	×
Sustained (W+P)	
C Expansion (T1)	
O Operating (W+P1+T1)	
○ Wind	
Response spectrum	
OK Cancel	

1-0-	Caepi	ipe : l	Loads on	Anchors: I	Response	spectrum	- [08			×
<u>F</u> ile	e <u>R</u> es	ults	<u>V</u> iew	<u>O</u> ptions	<u>W</u> indow	<u>H</u> elp				
4	5	╟			ð 16		-		\equiv	-
#	Node	Tag	FX (lb)	FY (lb)	FZ (lb)	MX (ft-lb)	MY (ft-lb)	MZ (ft-lb)		
1	10		10416	2965	4661	28247	59853	191368		
2	110		12906	4474	18303	25418	400410	80440		
3	510		5921	141	28891	138	74310	807		
4	630		15526	125	3833	8	15430	45		
5	710		1346	20	3333	39	8774	3		
6	790		3823	2026	3393	30301	50334	24125		

-0-	Caep	ipe : Disp	lacement	s: Respor	nse spe	ctrum -	[08_	Res	_		×
<u>F</u> ile	e <u>R</u> es	ults <u>V</u> ie	ew <u>O</u> pti	ons <u>W</u> i	ndow	<u>H</u> elp					
4	3	+		i 🔞	1 🔍			\ -	⇒	\equiv	+
#			[Displacem	ents (gla	bal)			^		
	Node	X (inch)	Y (inch)	Z (inch)	XX (de	9) YY ((deg)	ZZ (deg)			
1	10	0.000	0.000	0.000	0.0000	0.00	000	0.0001			
2	20A	0.003	0.001	0.000	0.0012	2 0.00)20	0.0132			
3	20B	0.235	0.015	0.014	0.0027	7 0.12	256	0.2231			
4	30	0.877	0.015	0.017	0.0017	7 0.11	46	0.2332			
5	40A	1.073	0.015	0.016	0.0021	0.11	13	0.2324			
6	40B	1.375	0.001	0.006	0.0025	5 0.05	532	0.1013			
7	50	1.351	0.000	0.006	0.0020	0.05	558	0.0987			
8	60	1.328	0.001	0.006	0.0015	5 0.05	583	0.0964			
9	65	1.195	0.002	0.006	0.0001	0.07	718	0.0850			
10	70	0.996	0.000	0.005	0.0005	5 0.08	375	0.0712			
11	75	0.762	0.001	0.004	0.0000	0.09	977	0.0574	~		
		1	1	1					_	_	
-0-	Caep	ipe : Pipe	forces in	local coo	ordinate	es: Resp	onse	sp	—		×
<u>F</u> ile	e <u>R</u> es	ults <u>V</u> ie	ew <u>O</u> pti	ons <u>W</u> i	ndow	<u>H</u> elp					
4	5	+			1 🔍			\	⇒	\equiv	+
#	Node	fx (Ib)	fy f: (Ib) (I	z m հ) տ	х I ыы	my (е.њ.	mz (ttalb)	SIF	SL+S(
1	10	(i0) /1190	2964 1	0310 10	1269	59952	2824	7	(psi) 7906	11	
l '	20A	4180	2964 1	0310 1	91368	16955	1621	3	7326		

¥

3.31

3.31

3.31 11523 3.31 9440

20B

20B

40A

40A

40B

20A

40B

 2711

2721

3815

-

100776 19342

107539 17759

-III Caepipe : Support load summary for anchor at node 10 $ \Box$ \times												
<u>File Results View Options Window H</u> elp												
Load combination	FX (lb)	FY (lb)	FZ (lb)	M× (ft-lb)	MY (ft-lb)	MZ (ft-lb)						
Sustained	0	-9872	-144	36275	0	0						
Operating1	0	39149	-13404	-301288	2	4						
Sustained+Wind	0	-9858	-150	36176	0	0						
Operating1+Wind	0	39163	-13410	-301387	2	4						
Sustained+Response	10416	-6907	4517	64523	59853	191368						
Sustained-Response	-10416	-12837	-4804	8028	-59853	-191368						
Operating1+Response	10416	42114	-8743	-273040	59856	191372						
Operating1-Response	-10416	36184	-18064	-329535	-59851	-191364						
Maximum	10416	42114	4517	64523	59856	191372						
Minimum -10416 -12837 -18064 -329535 -59853 -191368												
Allowables 0 0 0 0 0 0												