Tutorial for Steam Hammer Analysis using CAEPIPE

The following are the Steps for performing the Steam Hammer Analysis using CAEPIPE.

General

- Fluid Transient analysis is first carried out on the piping system using the Computational Fluid Dynamics (CFD) software such as "PipeNet", "RELAP", "ROLAST", etc.
- Most of the CFD software are capable of producing the output (force as a function of time at piping nodes where direction of flow changes such as at bends) in ASCII file format, which then can be read directly into CAEPIPE using the option "Read Time Functions" available in CAEPIPE Layout window > Misc > Time Functions.
- The resulting output thus imported into CAEPIPE are then applied at the corresponding nodes of the pipe stress model where direction of flow changes using "Time Varying Load" data type available in CAEPIPE.
- Specify various parameters for time history analysis in the Time History Analysis Control dialog under CAEPIPE Layout window > Loads > Time History.
- Perform analysis using CAEPIPE and make changes to piping layout and/or changes to support types and their locations, if required, to meet pipe stress analysis requirements.

Tutorial

Step 1:

Attached is a sample CAEPIPE model for Steam Hammer System. For the attached model, let us assume the following.

- 1. Node 5 is connected to the Discharge Nozzle of a Pump.
- 2. Node 40 is connected to a Turbine Inlet Nozzle.
- 3. A valve is located between Nodes 22 and 24 to protect the turbine nozzle during tripping.

1-8-	Caepij	be:M	ateria	ls (1) -	[07_T	imeHi	story	/_fluid	hamm	er.mo	d (C	:\Tutoria	als\S	Steam H	Ham	_		×
File	Edit	Viev	N O	ptions	Misc	Wir	ndow	/ He	lp									
-#				ið	\bigotimes		Η	(ja				➡						
#	Name	De	scripti	on			Ty pe	Densit (Ib/in3	y Nu I)	Joir fac	nt tor	Yield (psi)	#	Temp (F)	E (psi)	Alpha (in/in/F)	Allowat (psi)	ile 🔨
1	B12	A3	12 TP	316 (16	Cr-12N	i-2Mo)	AS	0.289	0.3	1.0	0		1	-325	30.3E+6	8.15E-6	20000	
2													2	-200	29.7E+6	8.47E-6	20000	
									_	_			3	-100	29.0E+6	8.75E-6	20000	_
													4	70	28.3E+6	9.11E-6	20000	
									_	_			5	200	27.6E+6	9.34E-6	20000	_
										_			6	300	27.0E+6	9.47E-6	20000	_
		_								_			7	400	26.5E+6	9.59E-6	19300	_
										_			8	500	25.8E+6	9.70E-6	17900	_
													9	600	25.3E+6	9.82E-6	17000	~
File # 1 2 3	Image: Pipe Sections (3) - [07_TimeHistory_fluidhammer.mod (C:\Tutorials\Steam □ × File Edit View Options Misc Window Help Image: Pipe Section (3) Image: Pipe																	
4															_		_	
File	Caep	ipe:l t Vi	Loads	(2) -	[07_1 ns N	lime l lisc	listo Wir	ory_flu ndow	idhan Hel	nmer.	res ((C:\Tuto	orial	s\21_S	5t —]	×
#	Name	T1 (F)	P1 (psi)	Desg. (F)	T De: (psi	sg.Pr. i)	Spe gra	ecific vity	Add.W (Ib/ft)	/gt. V L	√ind oad	Wine 1 Load	1 12	Wind Load 3	Wind Load 4			
1	L1	365	145	365	145	5	0.1											
2	L2	500	464	500	464	1	0.1											
	-											_	_		-			

Step 2:

For the sample layout described above, let us assume that the CFD analysis is carried out using the software "ROLAST". As a result of this simulation, the forces are obtained as a function of time at Bend center nodes 16 and 18 in Global Z direction and Global Y direction respectively.

Step 3:

The forces thus obtained as a function of time at Nodes 16 and 18 are then exported to an ASCII file "SampleSteamHammerLoad.txt" attached herewith. In the attached ASCII file, the value in the first column is time in seconds, while the second column is the force in lbs.

Step 4:

Import this ASCII file into CAEPIPE through Layout window > Misc > Time Functions > File > Read Time Functions. See snap shots below for details.

1-0-	Caepipe : Time f	unctio	ons (2) - [(7_TimeHis	tory	_fluidhammer.mod (C:\Tutorials\Steam		×
Fil	e Edit View	Optior	ns Misc	Window	Hel	р		
		f)] Q	-	⇒			
#	Name	#	Time (Sec)	Value	^			
1	TFUN FR_002	1	0	0.06677				
2	TFUN FR_001	2	0.001799	0.06463				
3		3	0.003599	0.06443				
		4	0.0054	0.06402				
		5	0.0072	0.06339				
		6	0.008999	0.06255				
		7	0.010799	0.06152				
		8	0.0126	0.0603				
		9	0.014399	0.05891				
		10	0.016199	0.05736				
		11	0.018	0.05566				
		12	0.0198	0.05383				
	1	4.0		0.05403	- *			

Step 5:

Now create Bend Center Node 16 by editing the "Bend at node 15" as shown below.

Step 6:

Similarly, create the Bend Center Node 18 by editing the "Bend at node 20" as shown below.

Bend at node 15 ? X	Bend at node 20 ? X
Bend Radius C Long C Short (inch) C User	Bend Radius C Long C Short (inch) C User
Bend Thickness (inch)	Bend Thickness (inch)
Bend Material	Bend Material
Flexibility Factor	Flexibility Factor
SIFs: In Plane Out Plane	SIFs: In Plane Out Plane
Axial Torsion	Axial Torsion
Intermediate Nodes	Intermediate Nodes
Node 16 at Angle 45 (deg)	Node 18 at Angle 45 (deg)
Node at Angle (deg)	Node at Angle (deg)
OK Cancel	OK Cancel

Step 7:

Insert a new row after node "15A" and define a "Location" card with node number as "16". Add a "Time Varying Load" under data column for node 16 and fill/select the details as shown below.

Time Varying Load at node 16 🛛 🗙 🗙							
Direction 🔽 💌 Units (Ib)	•						
Time TFUN FR_001	•						
Scale Factor 1							
OK Cancel							

Step 8:

Similarly, insert another row after bend node "20" and define a "Location" card with node number as "18". Add a "Time Varying Load" under data column and fill/select the details as shown below.

Time Varying Load at node 18 🛛 🗙 🗙							
Direction F 🗸 Units (Ib) 💌							
Time TFUN FR_002							
Scale Factor 1							
OK Cancel							

Step 9:

Specify various parameters for time history analysis in the Time History Analysis Control dialog under menu Loads > Time History. See Snap shot below.

Time History Analysis Control X								
Time step 0.01	(second)							
Number of time steps 100								
Output interval 10	🔽 Save results							
Damping 5	(%)							
OK Cancel								

Time step

The time step (time interval) at which the analysis is performed should be typically no more than 10% (smaller the better) of the period of the highest frequency of interest, i.e., higher the frequency, smaller the time step, e.g., for a 33 Hz maximum frequency, the time step would be less than 0.003 seconds.

Number of time steps

The time history response is calculated for a total time (seconds) of Time step × Number of time steps. This is how long you want to study system response. The total time may exceed the range of available data in the time function. The time function is only a forcing function. But, CAEPIPE can compute system response to it well after the forcing function ceases. For example, the effect of a heavy steam hammer could linger on for a minute while your forcing function data could span only 8s (seconds).

Output interval

The output interval is a multiple of time step at which you want CAEPIPE to save (and later display) results. For example, assuming a time step of 0.001s, if you wanted to see results at every 100th time step (0.1s, 0.2s, 0.3s, and so on), enter 100 for output interval. You need to check the "Save Results" checkbox to see these time varying results which are saved in the file <modelname>.rth. If the "Save Results" checkbox is not checked, only the enveloped results are available but not their variation in time. The .RTH files may be big for large models with many time steps (so ensure that you have adequate storage and permission settings).

Damping

Express the damping factor as a percentage (not as a fraction). Enter 5, not 0.05, for 5% damping.

Step 10:

Save the model and perform the analysis through Layout window > File > Analyze. CAEPIPE will apply these loads to compute the response of the piping system by performing a time history analysis along with other load cases defined in the piping system.

Step 11:

Upon successful analysis, CAEPIPE will now show a new item "Time history" in results dialog as shown below.

For time history results, you are shown the following dialog from which you need to select an item.

Then, you are shown a list of supports in the model from which you need to select one.

Support Loads Time 🗙						
Node	Туре					
5	Anchor					
10	Rod hanger					
15A	Snubber					
20B	User hanger					
40	Anchor					
115B	Hanger					
125	125 Anchor					
OK Cancel						

Once you select a support from the list, then you are shown the time history at that location.

P 0-	*®* Caepipe : Loads on Anchor at Node 5 - [07_TimeHistory_fluidhammer.res (C:\Tutorials\Steam Hammer A — 🛛 🗙										
Fil	e Results View	Options	Window	Help							
4											
#	Time (Sec)	Х (Њ)	Ү (Њ)	Z (lb)	XX (ft-lb)	YY (ft-lb)	ZZ (ft-lb)				
1	0	0	0	0	0	0	0				
2	0.1	0	-16	56	65	0	-4				
3	0.2	-3	-134	64	535	-26	-13				
4	0.3	-5	-36	27	144	-43	1				
5	0.4	-1	-90	40	359	-4	-12				
6	0.5	-2	-133	78	531	-20	-15				
7	0.6	-7	-69	24	273	-57	-2				
8	0.7	-1	-68	42	269	-12	-8				
9	0.8	2	-38	42	150	21	-9				
10	0.9	-3	-40	25	157	-24	0				
11	Max.Abs [Signed]	-7	-134	78	535	-57	-15				
			l				l				1

While viewing these results, you can export time history results to a comma separated values (.csv) file that can be read by a spreadsheet program such as MS-Excel (see menu File > Export) for further processing.